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The finite element model is employed to investigate the mean-square response of
a rotating blade with external and internal damping under stationary or non-stationary
random excitation. The blade is considered to be subjected to white-noise and earthquake
excitations. The effects of rotational speed, external and internal damping on the mean-
square response are studied. It is found that the mean-square response decreases quickly
when the external and internal damping increases within some scope. Moreover, the
increment of rotational speed will reduce the mean-square response of a rotating blade. It is
also found that the mean-square response decreases when the low natural frequency of base
decreases. Inversely, the mean-square response increases when the high natural frequency of
base (natural frequencies of base are over the first natural frequency of blade) decreases. The
reliability of a rotating blade subjected to stationary or non-stationary excitations is also
obtained.
© 2002 Published by Elsevier Science Ltd.

1. INTRODUCTION

The random vibration problems of a rotating blade are important in modern
turbomachinery design. The blades of turbomachinery are frequently based on random
excitations of fluid pressure excitations, earthquake loads, bearing oil excitations, or impact
loads. The random response of deterministic or undeterministic system is produced under
the random excitation. The over-random response is one of the serious problems which may
result in instability or fatigue of the system and should be considered in engineering design.
The variable of damping capacity is an important factor to prevent the large consecutive
damage due to the over-random response of a blade.

Carnegie [1] studied the vibration of a rotating cantilever blade by using the energy
method. The increment of strain energy due to rotation was first investigated. Further
studies of the vibrational characteristics of thin rotating blades using the finite difference
method are presented by Carnegie et al. [2]. Moreover, Carnegie and Rao [3] studied the
vibration problems of a rotating blade by the extended Holzer’s method. Krupka and
Baumanis [4] studied the bending-bending mode of a rotating blade including rotary
inertia and shear deflection by the Myklestad method. Stafford and Giurgiutiu [5] used
a semianalytic method based on transfer matrix method to study a rotating Timoshenko
beam. Abbas [6] and Thomas and Abbas [7] developed a finite element model which can
satisfy all the geometric and natural boundary conditions of a thick non-rotating blade.
Chen and Chen [8, 9] further studied the vibration and stability of cracked rotating blades

0022-460X/02/$35.00 © 2002 Published by Elsevier Science Ltd.



698 C.-L. CHEN AND L.-W. CHEN

by the finite element model which can satisfy all the geometric and natural boundary
conditions. Zorzi and Nelson [10] studied the effects of external and internal damping on
rotor-bearing systems by the finite element model. Fang and Wang [11, 12] studied the
mean-square response to white noise excitation of multi-degree-of-freedom (m.d.o.f)
systems by modal analysis. Ahmadi and Satter [13] analyzed the mean-square response of
Euler beam under non-stationary random excitation. Lee and Singh [14] developed a new
analytical method in order to study the impulse response of discrete vibratory systems.
Elishakoff et al. [15] studied the random vibrations of beams with various boundary
conditions by dynamic-edge-effect method. Fang [16] used the transfer matrix method to
study the dynamic behavior of a beam system with uncertain parameters. Lin et al. [17]
worked on the evolutionary Kanai-Tajimi earthquake models for engineering design
purposes. The stochastic response of asymmetric base isolated buildings with the
Kanai-Tajimi earthquake excitation were studied by Jangid and Datta [18]. Elishakoff and
Zhu [19] developed an improved finite element formulation of beams subjected to random
loading. Rackwitz and Fiessler [20] studied the structural reliability under combined
random load sequences. The first passage probability for stationary and non-stationary
random processes had been discussed by Langley [21] and Mason and Iwan [22].
Cederbaum et al. [23] analyzed the random vibration and reliability of plates and shells for
the first passage problem.

This report presents the finite element model to solve the response and reliability
problems of a rotating blade with external and internal damping under stationary and
non-stationary random excitations of white noise and earthquake.

2. FINITE ELEMENT FORMULATION

A rotating cantilever blade of length L subjected to the stationary random excitations of
concentrated force p(t)d(x — L), distributed force p(x, t) and earthquake acceleration j,(t)
(Figure 1) is considered. The Euler thin beam elements which neglect the effect of transverse
shear and rotatory inertia are used. The strain energy U and the kinetic energy T of the ith
beam element are given by [9-11]
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We ignore the longitudinal elastic motion of the blade; the work W, of the ith beam element
due to the centrifugal force is expressed as
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Figure 1. Blade disc assembly.

The virtual work 0W on the element due to the conservative and non-conservative forces is
expressed as

SW = OW, + 6Wy + 5Ws + 0W,, @)
1
W, = f [Ep(05(n — 1) + 0r. ) — pAFo(t)] 3 dn. 5)
SW,y = — J EIPC, <%> S dn ©6)
and
COVEL L (W [0
== [, e (fop) ) "

where W, is the virtual work of the random excitations, W, is the virtual work of the
external damping force, W5 is the virtual work of the internal damping force, [ is
the element length, y is the non-dimensional deflection y/I of the beam neutral line, 7 is the
non-dimensional co-ordinate x/I, R, is the radius of disc, 2 is the rotational speed of disc,
d(n — 1) is Dirac’s delta function, E is the modulus of elasticity, I is the second moment of
area of cross-section, p is the mass density of the material of blade, A4 is the cross-sectional
area of blade, Cy is the simplified external damping coefficient, C; is the simplified internal
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damping coefficient, e is the ratio of disc radius to length of blade R,;/L, and N is the selected

element number. The other non-dimensional parameters are defined as

S, = pAI*Q*/EI = u/N*, rotational speed parameter,

N-1 1
S3:S1[8XN+(i—1)], S4ZZSl<e><N+k+§>
k=1

The cubic Hermitian element is adopted. The deflection i of the ith beam element can be

denoted as
Y =1fmY()

=fii + oW + [l + fadbie s

where
tm =01 f2 f3 Jdd
YO =¥ Vi Yier Wieal,
fi=A=3+27°),  fo=(m—=20"+n,  f3=0n"—2n’

and

fo=(=n>+1n°).

)

©)

(10)

(11-13)

(14)

The fi, f>, f3 and f, are shape functions. Consequently, the general form of Hamilton’s

principle for the system is
ty
f (6T —oU + oW)dt =0.
1
Substituting equations (1)-(8) into equation (15), we have

t2 { 3 ro. . EI (' .
f pAl f (£Y)S(FY) dny _TJ (Y)5(£Y) dy
t 0 0

+ j ILp()o(n — 1) + p(n, 1) — pAyo(t)]0(FY) dn

0

1

— EIPBC, J

0

(£Y)S(FY) dny — ? c, J l(f”Y)é(f”Y) d

_EH [sljl n f €Y)3(E'Y)dn dy + S, f 1 f " (EY)5(EY) dy dn

n
[ 0 0

0

+ S, Jl fY)S(f'Y) dn]} dt = 0.

(15)

(16)
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Performing the integrals of equation (16), the finite element dynamic differential equation
can be obtained in the matrix form as

MY + C.Y +K,Y =F,, (17)
where M, is the element mass matrix, C, is the element damping matrix, K, is the element
stiffness matrix, and F, is the element external force vector. The detailed expressions of the
matrices are listed in Appendix A.

The boundary conditions at the clamped root are

Yi=0 and y;=0. (18)

Equation (17) of each element and the boundary conditions, equation (18), can be assembled
to give the finite global equations:

M + Cq + Kq =F, (19)

where M is the global mass matrix, C is the global damping matrix, K is the global stiffness
matrix, F is the global external force vector, and q is the global co-ordinate vector.
Express equation (19) in state-space form as

o llat Lo il &

Bi + At = Q, (21)

C M K 0
B = , A= ,
M 0 0 —M
q F
e=<.p and Q= . (22)
q 0

Let the time-dependent vector € be expressed as

or

where

e=UZ, (23)
where U is the modal matrix of the equation B¢ + Ag = 0 and Z is the time-dependent
co-ordinates.

Substituting equation (23) into equation (21), we have
BUZ + AUZ = Q. (24)
Premultiply both sides of equation (24) by U" to obtain

Zi+ WZi=Gyt), i=12,.. 4N, (25)
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where
U'BU =D = diagonal D; ,
UTAU = P = diagonal P; ,
ZT=|:Z1 Z, - Zi -], A = P;/D;
and
1 4N 1 2N
Gi(t) =D Y UiQ; = D >, UiFj. (26)
ij=1 ij=1

The solution of equation (25) is usually expressed by Duhamel’s integral as [17]
Z; = J Gt — 1) hi(r) dr, (27
where
hi(t) = e ** (28)
and

H;(w) = Jw hi(t)e 7 dr

= (4 +jo) . (29)

Substituting equation (27) into equation (23), the response y at r points known as the
element nodal points can be shown as

y=1I .42N U,; JOO Gt — 1)hi(r) dz. (30)

1= — 0

2.1. STATIONARY RANDOM EXCITATION

For the Gaussian stationary random processes, the autocorrelation function of the
response y is expressed as

R,(r, 1) = E[y(x, )y(x, t +7)]

4N 4N

212 Z Z UriUrk

i=1 k=1

j ) f " b (e ELGi(t — 1) Galt + 7 — 2)] de, dos. (1)

— 00 — 00
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According to the Wiener-Khintchine relationship, the spectral function of y is

1 [~ .
S,(r, w) = o f R,(x,7)e” ' dt

—
12 4N 4N

Y Y Ui UiHi(—o) Hy (o)

2n 3

— 00

When the mean values are zero, the mean-square response is expressed as

o0

E[y*] = f S,(r, w)dw

— o0

and equation (33) may then be solved when the random excitations are given.
For the white-noise excitation, the spectral function of p(t) is given as

Sy(w) = S, = constant

1 . —jo(tt+t—t
:%J. R,(t + 1, —1)e T (g,

— 0

where

R,(t+ 1 — 1) =E[p()p(t + 7+ 14 — 12)].

J E[Gl(t — Tl) Gk(l + 17— Tz)] eijw(t+11712) dT.
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(32)

(33)

(34)

(35)

In equation (26), G;(t) with the white-noise excitation at m points known as the element

nodal points becomes

420N?
Gi(t) = <m> Usip(2).

Using equation (36), the autocorrelation function of G;(t) is expressed as

Re(t + 11 — 15) = E[Gi(t — 11) Gi(t + T — 15)]

D;Dy

420N\2 UniUni - \
=\—- T T1 — To).
IpAL ? teo

Substituting equations (34) and (37) into equation (32), we have
Sy(r: CO) = H(r: CO)H(V, - 0)) Sua

where

H(r,—a))=<

420N\ N U, U
Hm@=< )z " H (o).
pAL J =y Dy

420N Lm'[/ i
E il Jil(—(ﬂ),
[)AL i=1 Di

(36)

(37)

(38)

(39)

(40)
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Finally, the mean-square response E[y*] can be obtained as

E[y*] = Jw H(r,w)H(r, — w) S, dw. 41

— o0

For the earthquake excitation, the Kanai-Tajimi earthquake model [12, 17] for the
seismic analysis is used to model the base excitation of the rotating blade, the spectral
function of the base acceleration j, is given as

Sy(0) w§ + 4 wiw?
) =
0 (0* — wd)* + diwiw? | €

1 (® i
=— f Ro(t 4 11 — 1,)e 1@ a7 m) dg, 42)
2n

— o0

where S, is the spectrum level of the broadband excitation at the base, w, is the natural
frequency of the base, {, is the damping ratio of the base, and the autocorrelation function
of the acceleration of the base is expressed as

Ro(t + 11 — 12) = E[Jo ()0t + 7+ 74 — 15)]. (43)

For the earthquake excitation at the root, the G;(¢) in equation (26) becomes

Gilt) = <42°N ) Une o ) (44)

ID;
Using equation (44), the autocorrelation function of G;(t) is expressed as

Rg(t + 11 — 15) = E[Gi(t — 1) Gi(t + © — 15)]

420N\2 U, U,
= <—> “Rolt + 14 — To). (45)

I D.D,

Substituting equations (42) and (45) into equation (32), we have

Sy(r’ (l)) = H(l’, w)H(r, —(D)So((l)), (46)
where
4N U . U X

H(r, — o) = 420N % Hi{(—w), 47)

i=1 i

4N U U
H(r,w) = 420N Y —2" H, (w). (48)

k=1 Dk

From equation (33), the mean-square response is expressed as

E[y*] = foo H(x, w)H(x, — w)So(w) dw. 49)

— o0
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2.2. NON-STATIONARY RANDOM EXCITATION
The response y of equation (30) can be shown as

y=1 42N U, f t Gi(1)hi(t — 1) dr. (50)

i=1 0

The non-stationary random excitation is presented by using the multiplicative description
as [13, 23]

G(t)=V(D)g(0), (51)

where V(t) is a deterministic slowly varying function, and ¢(¢) is a stationary random
process with zero mean and an autocorrelation function Rg(t, — 71).
The autocorrelation function of the response y is expressed as

Ry(r,1) = E[y*(r, 1)]

4N 4N t t
“PY Y UUy f f hi(t — 1) halt — 1) V() V(e) Re(es — 71) dry dea, (52)

i=1k=1 0Jo

where h;(t — t,) or h(t — 1,) is given by equation (28), R;(t, — 74) is given by equation (37)
for the white-noise excitation and is given by equation (45) for the earthquake excitation,
and V/(t) is taken as a unit step function or an exponentially decaying function e ~#, where
f is not allowed to be too large so that V/(¢) remains slowly varying.

3. RELIABILITY ANALYSIS

Reliability in a dynamic case is defined as the probability that the blade is not failing
within a specified time interval. We assume that the blade fails if the deflection y exceeds
some specific value y,. In the literature, this problem is referred to as the first passage
problem.

3.1. STATIONARY PROCESS

The reliability of the blade in a stationary process is given by [21-23]
Rel = exp[ —ut], (53)

where v is the expected rate of up-crossing the threshold y,, given by

2
O')-, ya

- — 54

0 2n0, cxp |: 2af:| ’ (54

where the variance o) is equal to the mean square response E[y’], and o, is the
root-mean-square transverse velocity.
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3.2. NON-STATIONARY PROCESS

The reliability of the blade subjected to non-stationary excitation is represented as

Rel = exp |:—fv dt] , (55)

where

o0 Ve
"= 2n0,0) P |:_20§(t)] ' (56)

4. NUMERICAL RESULTS AND DISCUSSION

A rotating cantilever blade subjected to the stationary random excitation is studied by
using the finite element method. The end mean square responses of a rotating cantilever
blade with S, = 0-000575(pAL)*> N?/Hz, S. = 0-000575 m?/s* Hz !, w3 = 242 x 10° 1/s?,
{o = 06398, Co = 0:02x 10~ °s/m* and e = 4 are presented in Table 1. The results show
that the present finite element method solutions have good convergence. The good
agreement of the present finite element method solutions with those of modal analysis and
Galerkin’s method demonstrates that the present calculations have excellent accuracy.

The effects of the simplified external damping coefficient on the mean-square response are
shown in Figure 2. As expected, the increment of external damping reduces the mean-square
response. It is seen that the influence of white-noise excitation at the free end and
earthquake excitation at the root are quite different. The simplified external damping
coefficient in the range 0:02x107° < Cy < 0-1x107° has a significant effect on the
mean-square response under white noise and earthquake excitations.

TaBLE 1

Convergence of the mean-square response (mm?* x 1073) of the free end of a blade by the
finite element method with S, = 0-000575(pAL)*> N?/Hz, S, = 0-000575m?/s*Hz"!,
o =242 x 10° 1/s%, {y = 06398, Cy = 002 x 10~ ° s/m*, e = 4T

White noise-excitation at the free end Earthquake excitation at the root
No. of
elements Non-rotating Rotating Non-rotating Rotating
N nw=>0 uw=06 u=0 u=06
2 12-1076 8-90382 1-98994 1-50311
(0-0055)* (0-0181) (0-0014) (0-0090)
3 12-0636 8-86678 1-98571 1-49990
(0-0019) (0-0139) (— 0-0007) (0-0068)
4 120525 8-:85707 1-98459 1-49899
(0-0010) (0-0128) (—0-0013) (0-0062)
5 12-0483 8-85333 1-98424 1-49871
(0-00006) (0-0123) (—0-0014) (0-0060)
a 12-0409 — 198712 —
12-0409 8-74556 198712 1-48977

ta, modal analysis solution [13]. b, Galerkin’s method solution [24].
¥ Percentage error with respect to Galerkin’s solution.
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Figure 2. The mean-square response at the free end of a rotating blade versus the simplified external or internal
damping coefficient (e = 4, u = 0-6): (a) white-noise excitation at the free end with S, = 0-000575(pAL)* N?/Hz,

—@—, Cop; —O—, Cy; (b) earthquake excitation at the root with S, = 0-000575 m?/s*Hz !, w3 = 242 x 10° 1/s%,
(o =106398, —@—, Cy; <—, C;.

Figure 2 also presents the effect of simplified internal damping coefficient on the square
response under white-noise and earthquake excitations. It is also shown that the
mean-square response will monotonously decrease when the internal damping increases.
For white-noise and earthquake excitations, the simplified internal damping coefficient in
the range 002 x 107 ¢ < C; < 0-1 x 10™° has also a significant effect on the mean-square
response. The effects of simplified external and internal damping coefficient on the square
response under white-noise and earthquake excitations are considered in Figure 3. As it is
clearly seen, the mean-square response decreases when the internal and external damping
increase at the same time.

For the white-noise and earthquake excitations, the effects of the simplified internal
damping coefficient and rotational speed on the mean-square response at the free end of
a rotating blade are shown in Figure 4(a) and 4(b) respectively. It is seen that the influence
of simplified internal damping coefficient on the mean-square response decreases when
rotational speed increases.

Figure 5 presents the effects of the simplified external damping coefficient and rotational
speed on the mean-square response at the free end of a rotating blade for the earthquake
excitation of the root. It is again shown that the effect of simplified external damping
coefficient on the mean-square response decreases when the rotational speed increases. The
results indicate that the increments of rotational speed and damping become the forces of
resistance which act on the blade, and cause the reduction of the mean-square response.

Figure 6 shows the effects of the simplified internal damping coefficient and the low
natural frequency w, of base (w, < the first natural frequency w; = 4-10384 x 10> 1/s of
rotating cantilever beam) on the mean-square response at the free end of a rotating blade for
the earthquake excitation of the root. It is found that the mean-square response decreased
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Figure 3. The mean-square response at the free end of a rotating blade versus the simplified external
and internal damping coefficient (e =4, p=06): (a) white-noise excitation at the free end with
S, = 0:000575(pAL)* N?/Hz, (—@—); (b) earthquake excitation at the root with S, = 0-000575m?/s*Hz" !,
w3 =242 x10°1/s2, {, = 0-6398, (—&—).
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Figure 4. Effects of the simplified internal damping coefficient and rotational speed on the mean-square
response at the free end of a rotating blade: (a) white-noise excitation of free end (e =4,
S, = 0:000575(pAL)* N?/Hz), (u — —@—, 0-6; —¢—, 1-0; —A—, 1-4); (b) earthquake excitation of the root (e = 4,
S. = 0000575 m?/s*Hz " !, w3 = 242 x 10° 1/s2, {( = 0-6398), (u — —O—, 0-6; —<>—, 1-0; —A—, 1-4).
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Figure 5. Effects of the simplified external damping coefficient and rotational speed on the mean-square
response at the free end of a rotating blade for the earthquake excitation of the root (e =4,
S. = 0000575 m?/s*Hz " !, w§ = 242 1/s?, {, = 0:6398): (1 — —@—, 0-6; ——, 1-0; —A—, 1-4).
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Figure 6. Effects of the simplified internal damping coefficient and the low natural frequency of base on the

mean-square response at the free end of a rotating blade for the earthquake excitation of the root (e = 4, u = 06,
S, = 0000575 m?/s*Hz "L, {, = 0:6398): (wo(1/s) — —@—, 5; ——, 15; —A—, 25).
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Figure 7. Effects of the simplified internal damping coefficient and the high natural frequency of base on the
mean-square response at the free end of a rotating blade for the earthquake excitation of the root (e = 4, u = 06,
S. = 0000575 m?/s*Hz ", {, = 0:6398): wy(1/s) — —@—, 5000; —&—, 15000; —A—, 25 000.

when the low natural frequency of base decreases. Inversely, for the high natural frequency
of base wy > wy, it can be seen in Figure 7 that the mean-square response increases when
the high natural frequency of base decreases.

Figure 8 shows that the mean square response is constant at 0-7181 x 10~ mm? for
stationary white-noise excitation and gradually approaches the constant value after
t = 3-2 s from zero for non-stationary case.

Figure 9 presents the results for y, =0-05 and 0-06 mm, with time (s) shown in a
logarithmic scale under the earthquake excitation. It can be seen that the reliability level of
0-95, for example, is obtained at t = 1563 s for y,=0-:05mm and at t = 161-2s for
Yo = 0-06 mm. It should be noted that this difference is due to an increase of only 20% in y,.
The reliability at t = 10 s of the blade with different S, is shown in Figure 10 for y, = 0-05
and 0-06 mm. It is seen that for a specific y,, the reliability decreases with the increase of S..

Figure 11 shows the results for the stationary white-noise excitation. It is found that the
reliability level of 0-95 is obtained at t = 2-512's for y, = 0-05 mm and at ¢t = 11-63 s for
¥« = 0:06 mm. For the non-stationary white-noise excitation modulated by a unit step
function, Figure 12 shows that the reliability level of 0-95 is obtained at t = 4-584 s for
Ya=005mm and at t=21-05s for y, =006 mm. For the case of stationary and
non-stationary white-noise excitation, the reliability at t = 10 s of the blade with different
w is shown in Figure 13(a) and 13(b) respectively. It is seen that for a specific y,, the
reliability increases with the increase of p.

5. CONCLUSIONS

The present finite element model is shown to be an effective method and to have good
accuracy for the analysis of random vibration of a rotating blade. It is found that the
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Figure 8. The mean-square response at the free end of a rotating blade versus time (e =4, u =046,

C;=01x10"°s, S, = 0:0003(pAL)*> N?/Hz): (a) stationary white-noise excitation, (—@—); (b) non-stationary
white-noise excitation modulated by a unit step function, (——).
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Figure 9. Reliability versus time for the stationary earthquake excitation of root with e =4, pu =046,
Cy=01x10"%s, S, = 0000575 m?/s*Hz~ !, o} = 242 1/s?, {, = 0:6398: y,(mm) — —@—, 0-05; —&—, 0-06.
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Figure 10. Reliability versus the earthquake excitation spectrum level with ¢t =10s, e=4, u= 006,
C, =01x10"%s, S, = 0000575 m?/s* Hz !, w3 = 242 1/s%, {, = 0-6398: y,(mm) — —@—, 0-05; —¢—, 0-06.
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Figure 11. Reliability versus time for the stationary white noise excitation of free end with e =4, u = 06,
C;=01x10"%s, S, = 000015(pAL)> N*/Hz: y,(mm) — —@—, 0-05; —4—, 0-06.
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Figure 12. Reliability versus time for the non-stationary white-noise excitation modulated by a unit step
function with e =4, u =06, C; = 011 x 10~ °s, S, = 0:00015(pAL)*> N?*/Hz: y,(mm) — —@—, 0-05; ——, 0-06.
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Figure 13. Reliability versus the rotational speed: (a) stationary, (y,(mm) — —©—, 005, ——, 0-06);
(b) non-stationary, (y,(mm) — —@—, 0-05; ——, 0-06) white-noise excitation modulated by a unit step function
withe =4, u=06,C, =01x10"%s, S, = 0:00015(pAL)> N?/Hz.
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external and internal damping have a significant effect on the mean-square response. As
expected, the increment of damping and rotational speed will reduce the random response
of a rotating blade, and cause the increase of reliability. Moreover, the mean-square
response decreases when the low natural frequency of base decreases. Inversely, for the case
that the high natural frequencies of base are over the first natural frequency of blade, the
mean-square response increases when the high natural frequency of base decreases. In
engineering design, the present calculations of the rotating blade reliability under the
random excitation are important to presume the instability or fatigue of the system due to
the over-random response.
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APPENDIX A
156 2 54 —13
P Al 4 13 -3
7 420 | symmetric 156 —22/
4
C, = EI [Ci], Cij=Cj, iandj=1,2734,
4201

EI

Ke= 2201

[Kij], Kij = Kji, i andj = 1,2, 3, 4,

where
Ci1 = 156C,l* 4+ 5040C,,  Cy, = 22C,l* + 2520C;,
Ci3 = 54Col* — 5040C,,  Ci4= — 13C,l* 4 2520C,,

Cyy = 4Col* +1680C,,  C,3 = 13C,l* — 2520C,,

Coy = —3Col* +840C,,  C;3 = 156C,l* + 5040C;,
Cay = —22Col* —2520C;,  Cuy = 4Col* + 1680C,,
K1 = 5040 + 180S, + 25255 4 5045,
K, = 2520 + 6S; + 42S,,
K3 = —5040 — 180S, — 25255 — 5045,
K4 = 2520 + 278, + 4285 + 428,
K,, = 1680 + 248, + 4255 + 565,,
K,y = —2520 — 6S; —42S,,  K,, = 840 — 45, — 7S5 — 14S,,
K33 = 5040 + 1808, + 25255 4 5045,
K34 = — 2520 — 278, — 4285 — 42S,,

K = 1680 + 108, + 14S; + 56S.,.
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